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Steady-State Solutions of Discrete-Velocity
Boltzmann Systems in Restricted Flow Regions

HOWARD E. CONNER
rr,

Mathematics Research Center Report 72-2
Mathematics and Information Sciences Division

Abstract: The existence of steady-state solutions is established for discrete-
velocity Boltzmann systems in a restricted flow region. The principal result states that
such solutions exist and are positive provided that the boundary scattering operator does
not distort the associated kinetic equilibrium solutions too much. The steady-state solu-
tions are represented as perturbations of kinetic equilibrium solutions.

1. INTRODUCTION

To develop a discrete-velocity Boltzmann model, the classical one-particle distribution function
p(t,x,v), with spatial coordinate x restricted to a three-dimensional flow region S2 with boundary ', and
with unrestricted velocity coordinate v, is replaced by n one-particle velocity-type distribution functions
pk(t,x), 1 6 k 6 n, for n discrete-velocity types Vk, 1 6 k 6 n. The classical integrodifferential equa-
tion for determining p(t,x,v) with mixed initial-boundary conditions is then replaced by a first-order
symmetric hyperbolic quasi-linear system for determining pk(t,x), 1 < k 6 n, of the general form:

a pk(t,x) + vk * Vxpk(t,x) = Bk(pp), t > O, x E S2, 1 6 k 6 n,

Bk(P,P) =i{Vj 2 Ag2 PiPQ - VkQ AkQPkPQ},

jQ

with the initial condition

pk(O,x) = fk(x), x E2, 1 < k < n,

and a boundary condition of the form

Note: Dr. Conner holds joint appointments at the NRL Mathematics Research Center and the University of
Wisconsin. This work was partially supported by the U.S. Army under Contract No. DA-31-124-ARO-D-462.

NRL Problem B01-11, Project RR 003-02-41-6153. This is a final report on one phase of a continuing NRL
Problem. Manuscript submitted March 8, 1972.
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Jv1-n(x)|pk(t,x)=T njk(X)1Vi-n(x)lpj(t,X), t> o, x C= r,

for those values of k for which vk * n(x) < 0. ( denotes a summation over those values of / for which

v; * n(x) > 0, where n(x) is the unit exterior vector to R at x on the boundary r.) The numbers vik,
the vectors < and the functions nick' fkl 1 1, k, 2 < n, are given data for the model.
In this report, we shall develop some results on the steady-state solutions of discrete-velocity

Boltzmann models. These results are for application in a companion report on the time-dependent solu-

tions of such models. However, the methods used in the two studies are so different that each is sep-

arately reported.
In a classical work on the spatially homogeneous Boltzmann equation, T. Carleman has a result on

the global existence of time-dependent solutions of a general discrete-velocity, spatially homogeneous,

one-dimensional model, (I; p. 100). Later, in his collected works on the kinetic theory of a gas (2;
appendix), Carleman discussed a simple two-state, one-dimensional, spatially dependent unrestricted

model, which is now referred to as Carleman's model. I.1. Kolodner proved the global existence of

positive solutions of Carleman's model and discussed how his methods of proof could be used to treat
more general forms of the collision operator (3). Using a different method, we have proved the global

existence of positive solutions of one-dimensional, unrestricted, discrete-velocity models with special

quadratic collision operators (4).
In the area of applications, J.E. Broadwell has used the method of discrete velocities to describe

the structure of a shock wave in a gas in which the molecules move in only six directions and at con-

stant speeds (5) and to study the problem of shear flow (6).
A discussion of the appropriate boundary conditions for the classical Boltzmann equation can be

found in either the book, Rarefied Gas Dynamics, by M.N. Kogin (7) or the book, Mathematical
Methods in Kinetic Theory, by C. Cercignani (8). The book by Cercignani contains some results

(Ch. VI, Sec. 1 through 5) on the solution of the steady-state restricted flow problem for the lineariza-

tion of the classical Boltzmann equation with respect to a Maxwellian steady-state solution. Section 5
of Ch. VI also contains a summary of the work by Y. Pao on the steady-state solutions of the one-

dimensional linear and weakly nonlinear flow between infinite parallel plates (9). J. P. Guirard has

published an extensive examination of the solutions of restricted flow problems for the linearization of
the classical Boltzmann equation with respect to a Maxwellian steady-state solution (10).

II. PRELIMINARY NOTATION

We shall assume that the following data are given:

Bounded flow region Q2 C R3 with boundary r and unit exterior vector n(x) at x E r. (2.1a)

Velocity types vk ER 3 - I 0 , for all 1 6 k < n, (2.1b)

Collision rates uik = vkj E R,, for all 1 6 j, k < n, (2.1c)

Collision scattering laws A Ck C R+, for all 1 6 , k, £ 6 n, (2.1 d)

Boundary scattering laws nik(x) C R+, for all 1 < I, k 6 n, (2.1e)

and x E r for which vk * n(x) < 0 and vi * n (x) > 0.
For any set E and for x = R or Rn, we shall use

F(E,X) to denote the collection of mappings from E to X.

2
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Cr(E,X) to denote those mappings from E to X which are r-times continuously
differentiable over E.

C(E,X) to denote the collection of bounded and continuous mappings from E to X.

3 <-
>N

(2.2b) .

(2.2c) r

For a given set of velocity types jvk, 1 6 k 6 nI, we define the mapping

S: cl (92,Rn) - C(92,Rn) : f -+ Sf,

(Sf)k(x)=(vk Vfk), 1 k n, xCEQ2. (2.3)

For a given scattering rate v and collision scattering law A, we shall define the (nonlinear) collision
operator B and state some of its intrinsic properties:

B: C(92,Rn) - C(92,Rn): t - B( , ) (2.4)

(B(Q))k = T BA¶m m
Q'm

Bm - 2vQm(AQm + Am (k,Q)E Akim - 6 (k,m) L AkQ
j=l j=1

BQkm =BkmQ; Bkm > 0, Q and m # k,

'09m 6 0, R or m = k, .Bm = 1,

Q,m

I 6<k,Q,m<n

(2.4a,b)

(2.4c,d)

(2.4e)

For a given set of velocity types I vk :1 <k 6 n} and flow region Q2, we shall define the various
emitting, impinging, and tangent parts of r.

Let n(x) be the unit exterior vector to Q2 at x on r. For 1 < k < n,

1e(k)=IxEr:vk .n(x)<O}. (2.5a)

ri(k) =ix E r:vk *n(x) > 0[. (2.5b)

rt(k) = {x E r: vk * n(x) = 0} (2.5c)

Q+(k) = Q2 u re(k) U ri(k). (2.5d)

We shall introduce some special notation for various collections of n-tuples of functions f = (fA, ... , f),
of which each fk has a distinct domain of definition.

C(Q R l) = {f = (fi, *--,n):fk EC(Q+(k),R), 1 < k 6 ni.

Bk = 1, 1 6,m 6n.
k

(2.6a)
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C(re,Rn) ={f = (fi,...,fn) :fk E= C(re(k),R), 1 6 k 6 n}. (2.6b)

C(r',Rn) ={f = (f', ...,fn) :fk E C(ri(k),R), 1 6 k 6 n}. (2.6c)

For a given boundary scattering law H, we can construct the boundary scattering operator R. We
shall assume that the boundary scattering law H is such that R has certain useful properties.

R:C(ri,Rn) - C(reRn): f Rf (2.7)

(RAWI~k(x) IV' -~(v * n(x)l Ivk * n (x)l -1 fi(x), x zE Fe(k). (2.7a)

denotes a summation over those values of i for which vi * n(x) > o.) (2.7b)

R is a positivity preserving (linear) operator. (2.7c)

If the boundary scattering law n is such that

E Hlk(x) = 1, then E vk * n(x)fk(x) = 0.
k k

For any f E C(Q+2, Rn), we shall now define the restrictions of f to the emitting and impinging
parts of r.

Suppose that f E C(92+,Rn) so that fk C(EQ+(k),R), 1 6 k < n. (2.8)

E:C(&2+,Rn) - C(re,Rn), (2.8a)

(Et)k =fkIre(k) over re(k), 1 6k n.

I: C(Q+, Rn) - C(ri, Rn), (2.8b)

(IF)k =kAri(k) over Ti(k), 1 6 k n.

Before completing this section, we want to introduce some more notation.

Suppose f and g E C(92+,Rn): (2.9a)

f = g over Q+ is an abbreviation for fk = gk over Q+(k), 1 6 k 6 n.

Suppose f and g G C(re,RRn) or C(riRn): (2.9b)

f = g over re or ri is an abbreviation for fk = gk over re(k) or ri(k), 1 6 k 6 n.



NRL REPORT 7410 5 C

D-

HI. REFORMULATION

Using the notation and the definitions of Sec. II, we shall express the problem of steady-state -

solutions in the form:

Sg =B(q, q) over Q2. (3.1a)

Eq RIq over re. (3.1b)

The construction of B shows that

B(cl,cl) = c2B(1,1) = 0, 1 = (1, ...,1), c ER. (3.2)

. Consequently, for any c > 0, cl is a positive solution of 3.1a. If 1 satisfies 3.1b, then I cl; c > 0 1
is a one-parameter family of steady-state solutions which can be used to order-bound the class of non-
negative data for the time-dependent problem; i.e., to each f in C(Q2, Rn) there corresponds a c and a c
such that cl < fk < c1. In general, 1 will not satisfy 3.1b.

The boundary scattering operator R is called kinetically active (passive) if

KR =RI1 -EII #0 (-O) over re. (3.3)

Assuming that R is kinetically active, we shall look for a steady-state solution of 3.1 in the form

q-=c +g, (3.4)

so that g is to be determined as a solution of

Sg = 2 c B(1,g) + B(g,g), over Q2,

Eg = Rlg + 5 over re,

6 =C KR E C(re,Rn), c > 0.

For convenience of notation, we shall define the linear collision operator:

L: C(92+,Rn) - C(Q,Rn): f -+ Lf = 2B(jf),

n

(Lf))k =2 2 L/kfi,
j=1

n (3.6)
Lik = 2 B/k, I <j,k<n.

Q=1

At this stage it is worthwhile to exploit a certain positivity property (2; Lemma 1) which applies
to both B and L. Therefore, for an arbitrary diagonal positive operator

D : C(Q+,Rn) - C(QWRn): f - Df
(3.7)

(Df)k =d kfk, dk >0, 1 k<n,

we have transformed the original problem 3.1 into finding a solution g of

(3.5a)

(3.5b)

(3.5c)
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(S +D)g = cLg + Dg + B(g,g) over Q2, (3.8a)

Eg -- RIg + 8 over re, (3.8b)

for arbitrary S in C(re,Rn). If g is a solution of 3.8, if r is an active boundary, and if S is chosen to
be of the form 3.5c, then q = cl + g is the solution of 3.1.

The next step is to reformulate 3.8 in a form which treats the relationship between g and 6 over
Q2 equally to that over re.

Setting aside the details until the next section, we shall let JA denote the solution of

(S +D)g =h over Q2, h E C(92',Rn), (3.9a)

Eg = 0 over re, (3.9b)

and let Ma denote the solution of

(S + D)g = 0 over Q, (3.10a)

Eg = over re, cxEC(reRn). (3.1Ob)

Then the solution g of

(S+D)g=h over Q2, (3.1la)

Eg=a over re, (3.1Ib)

for given h E C(&2+,Rn) and a E C(Ie,Rn) is given by the representation

g = A + Ma. (3.12)

If a e C(re,Rn) and h (E CQRn), then Ma and Ah are defined over 92+ in the sense of formula
2.9.

We next construct a map

G: C(re,Rn) X C(E2+,Rn) X C(reRn) - C(O+,Rn) X C(reRn),
(3.13)

:(S,g,a) - (hfd)

using the rule

h = g - J(cLg + D g + B(g,g)) -Ma - Mb over Q+

a = a -RIJ(cL +D)g -RIJB(g,g) -RIMa -RIMS over re.

The map G has three properties which are important for our purpose. The first is:

If h = 0, then (3.14)

Eg ca + 6 over re (3.14a)

Ig IJ(cL +D)g + IJB(g,g) + IMa + IMS over re. (3.14b)
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The second is:

If , = 0, then a = RIJ(cL +D)g + RIJB(g,g) + RIMa + RIMS over re.

The third is:

G(0,0,0) = (0,0).

A direct consequence of 3.14 and 3.15 is that the implicit relation

G(6,g,a) = (0,0)

implies that

g=J(cLg+Dg+B(g)) +Ma +Mb over W,

Eg = RPg + 8 over re.

If each term in the right side of 3.1 7a admits the application of (S + D), then applying (S + D)
shows that

Sg = cLg + B(g,g) over Q2.

IV. STEADY-STATE SOLUTIONS

In the previous section, we have replaced the problem of finding a solution g of 3.8 with that of
finding a solution (g, a) of

G(S,g,a) = G(0,0,0) = (0,0).

We shall now fix 6 E C(re,Rn) as a parameter and treat g E C(92',Rn) and a E C(re,Rn) as
independent variables. Letting

(h, 3) = G(6,g,a), (4.1)

we shall define the map

F6 :C(Q2+,Rn)X C(re,Rn) -+F(Q2+,Rn)X F(re,Rn):(g, a) - (g-k, a -), (4.2)

where (k, r) is the solution of

k-J(cLk+Dk)=h +My over Q+
(4.3)

y-RIJ(cL+D)k =f+RIMk over r e.

We shall then show that for each deformation parameter 6 there is a closed, spherical neighborhood
of g = 0 and a = 0 of radius r* = r*(S) over which E6 is a contraction map (with contraction constant
,u ()) and that F6 displaces the center (0,0) by less than (1 - u)r*. This is sufficient to show that F6
has a (unique) fixed point (g, a). It then follows from the construction of F6 that G (6, g, a) = (0, ), so
that g is a solution of 3.17. If g E Cl(&2,Rn) then g is a solution of 3.8. If 6 has the form 3.5c, then
q = cl + g is a steady-state solution of 3.1.

7 a!,
cC

I-

(3.15) 

rrMG

(3.16)

(3.17a)

(3.1 7b)
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V. INVERSION OF (S + D)

In this section, we shall develop the solution g of (see 2.5, 2.7, and 2.8)

(S +D)g = h over Q, h C C(9+,Rn). (5.la)

Eg = a over re, a C C(reRn). (5.1 b)

To accomplish this purpose, we shall restrict the class of admissible flow regions Q.

Assumption 1. There is a Cl-function 4 with domain D(v) containing i such that QŽ and F are
determined by A:

E2 I x GD(OQ): (x) < 0}, (5.2a)

r =Xx ED(Q): O(x) = 0}, (5.2b)

IO =cl} CIO =c 2 }, cl < c2, (5.2c)

l(vO)(x)l * O. x C F, r > 1. (5.2d)

The unit exterior vector n along r for a flow region Q2 satisfying 5.2 is given in the form n = I(v)I 1

(Via) over r.
The first problem is to find a representation for the solution g of

(S+D)g=0 over Q. (5.3a)

Eg = a over re, a E C(reRn). (5.3b)

Corresponding to each velocity type pk, we assign to each x in E2 a unique xk in re(k) by
choosing xk(x) to be the first intersection with re of the directed line through x in the direction (-vk).
To be more precise, for each k, 1 < k < n, and each x C Q2, let 4k be the natural parameterization of
the characteristic line Ck(x) through x associated with the direction vk:

Ck(x) = I y GR 3 :y = x + svk, s ER , (5.4a)

,D/k :R X i -* R3 is the solution of (5.4b)

dt x(t) = vk, x(O) = x, t CER, x CEQ

Using the parametrization SDk of Ck, we define the first hitting time 'rk of Ck with re(k) and the
hitting place xk.

T7k Q:- R+:x - k(x), x E Q, (5.5a)

Tk(x)=min Is>0:x-svk rej, 1 <k~n.

x(k = - re(k):Tx / xk(x), x E .(5.5b)

x-k(x) =,,Dk(-7-k(x),x), I 6 k < n.

8
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The following properties are easily verified. For 1 < k < n,

nc and ik are continuous over Q2 U r. (5.5a)

rk(x) = 0, x e re(k) U rt(k). (5.5b)

xk(x) = x, x Ere(k) U rt(k). (5.5c)

We want to extend the application of the free-flow operator S by interpreting S as a directional
derivative. So, we define the following:

D(k) = the collection of functions f in C(i2',R) for which the directional derivative (5.7a)

(&kf)(X) = lim I I f (x + tvk) - f (x) I
t-*0 t

exists at each x E 2, 1 6 k < n, and is continuous over Q2.

=f E C(S2+,Rn): fk C D(k), I < k < ni. (5.7b)

S:D - C(U2,Rn): f - Sf (5.7c)

(S3)/(x) = (Skfk)(x), x E 2, 1 < k < n.

The directional derivative S is an extension of S in the sense that

CI(92,Rn) C D, (5.8a)

Sf = Sf, f C Cl(R,Rn), over Q2. (5.8b)

PROPOSITION 1. If the determining function 4 for Q2 (see 5.2) is a continuous function, then

(a) Tk c D(k)

(b) (Skrk)=I over Q2, 1 6k6<n

(c) fe(/k) E D(k), f E CI(E2,R), 1 < k < n

(d) Yk(f(-k)) = 0 over 2, f E C1 (S2,R), 1 <k 6n.

Since the proof of Proposition 1 is an elementary exercise, it has been omitted.

PROPOSITION 2. If the determining function 4 for Q2 is a C1 -function over its domain, then

(a) Tk is a Cl-function and x/k is a CI-map over Q.

(b) Sk = vk- V can be applied to rk and f(-k), f E C1(QR), 1 6k 6n.

Proof For fixed x° in Q2, the properties 5.3a, b, and c imply the existence of a (smallest) s° for
which O(x° - spvk) = 0. The functions rk and xk evaluated at x° are related to s°:
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(a) -Tk(xO) = SO.

(b) xk(x 0 ) = XO- sOvk

Setting F(x,s) = 4'(Fk (sx)), we have (for sufficiently small s)

(a) F(x 0 ,sO)=0.

(b) a (X s) =-Vk (v - vk)), x E Q2.

Since

IVYj * 0 over r, -aF (x 0,s 0) O.

Using the classical implicit function theorem and the (real) analyticity of ck, we find that
(a) there exists (i) a neighborhood N(x 0 ) of x0 and (ii) a function s :N(x 0 ) - R, s(xO) =

so, for which F(x,s(x)) = 4 (s - s(x) vk) = 0, x E N(x 0 ), and
(b) s has the same order of differentiability as 4.

Using again the properties of 4 (5.2) and the definition of r4(5.5), we know that Tk(x) = s(x) for
x E N(xO). Consequently, rk has the same order of differentiability over LZ as 4. Since :k(x) =

4Fk(-Tk(X),X), Xi also has the same order of differentiability over E2 as 4'.-
Using the results of Propositions 1 and 2, we define for each diagonal operator D (3.7) the linear

map

M :F(re,Rn) -e F(2,Rn): a - Ma, (5.9)

(Ma)/C~x) = edkrk(x) =ak(xk(x)), x E 92+(k), 1 6 k 6 n.

With the properties of r and x stated in 5.6 and the definition of M, 5.9, there is no difficulty in show-
ing that M maps a bounded continuous a over re into a bounded continuous Ma over W;

M: C(re,Rn) - C(Q+,Rn). (5.10)

PROPOSITION 3. Suppose a E C(re,Rn). Then

(a) Mae D.

(b) (S +D)(Ma)(x) = 0, x E Q

(c) EMa = a over re.

PROPOSITION 4. Suppose a E C(re,Rn) n Cl(re,Rn). Then

(a) Ma CC C1(2, Rn)

(b) (S +D)(Ma) = (S +D)(Ma) over Q2.

lo
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Since the verification of the results stated in Propositions 3 and 4 follows directly from 5.9, 5.10 and
the results of Propositions 1 and 2 as a routine exercise in the application of Sk and Sk, they have been
omitted. -

The next problem is to find a representation for the solution g of

(S +D)g = h over Q2, h E C(2+,Rn) (5.1 la)

Eg=O over re. (5.1 lb)

To accomplish this purpose, we may use the properties of Tk and xk to define the linear operator

J: C(62,Rn) - F(9i+,Rn): h - jh

(jh)k(X) =edkrk(x) k edkd hk(XW(x) + svk)ds, X E 12Z(k), 1 6 k 6 n.

We want to stress that (Jh)k(x) is defined as a weighted line integral of hk(s) (the weighting factor is
exp -dk(rk(x) - s) over the directed segment from ik(x) to x in the direction vk. Using 5.6 and the
definition of J, 5.12, we find that J maps a bounded continuous h over S2 into a bounded continuous
Jh over 92+.

J: CQ9,Rn) - CQ&2,Rn). (5.13)

PROPOSITION 5. Suppose h E C(12,Rn). Then

(a) Jk E D

(b) (3i+D)(Jk)=k over £2

(c) EJh = 0 over re.

PROPOSITION 6. Suppose h E C(62+,Rn) C'(92,Rn). Then

(a) Jh E Cl(92,Rn)

(b) (S+D)Jh =(S+D)JJh over Q2.

Proof. As previously emphasized, (Jh)k(x) is defined as the evaluation of a line integral. Conse-
quently, in Proposition 5, a and b are simply restatements of the fact that the directional derivative of
an indefinite line integral in the direction tangent to the line results in a number equal to the integrand
evaluated at the point of differentiation on the line. The validity of Proposition 5c follows directly
from the definition of Jh (5.12).

Since Tk is a Cl-function and xk is a Cl-map when 4 is a Cl-function, the upper limit and the
integrand in the line integral which defined Jh are both C1 . Therefore Jh is a Cl-function. Both 7a
and b follow directly from this..

We shall now define norms for the collections C(QQ,Rn), C(re,Rn), and C(ri,Rn). The classical
uniform norm of a bounded function f defined over a set A is denoted by IfIA.
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N(f)g,+= max (IfklI2n+(k); 1 6k6n). (5.14a)

N(f)re max (IfkIre(k); 1 k 6 n). (5.14b)

N(f) ri max (IfkIr(k); 1 < k < n). (5.14c)

Since each collection C(QW(k),R), C(re(k),R), and C(F',R), 1 6 k 6 n, with its uniform norm is a
B-space, each collection C(Q+,Rn), C(Je,Rn), and C(ri,Rn) is a B-space; and so, any product combina-
tion of C(92+,Rn), C(re,Rn), and C(ri,Rn) with the appropriate sum norm is a B-space.

PROPOSITION 7. Suppose a E C(re,Rn). Then

IMakln+(k) 6 lakIre(k) 1 6 k n. (5.15)

PROPOSITION 8. Suppose h E Q~pRn). Thent

I(Th~kL\+(k) /< ek ( -/ e 2 (k)/lhkln+(k) 1 6 k 6 n. (5.16)

Using Propositions 7 and 8 and the definitions in 5.14 results in estimates for M and J:

N(Ma),+ < N(a)re (5.17a)

N( Jh)n + 6 c(D,92)N(h),+ (5 .1 7b)

c(D,2) = max {d I1-e k 1,+kl )) 1 6 k < n}.

Since these inequalities are direct consequences of the definitions of M and J, a verification of Proposi-

tions 7 and 8 and 5.17 has been omitted.
The preceding analysis for S, M, and J can be easily modified for application to the dual problem

of finding a solution g* of

(-S +D)g = hE C( Q,Rn). (5.1 *a)

Ig = a* E C(ri,Rn). (5.1*b)

The most significent change is to define the first hitting time Tk* of Ck with ri(k) and the associated
hitting place xk*

TV : - R+: x _ rk*(x), x E 2, (5.5*a)

rk*(x) = min s > 0: x + svk e ri I < k 6 n.

X-k f2 _ ri(k): x _ xk*(x), x E Q., (5.5*b)

Xk*(x) = bk(Tk*(x),x), 1 k 6 n.

12
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Replacing T with T* and xF with x, we can apply the preceding development to 5.1*. In particular, the -
auxiliary operators M* and J* can be defined as follows:

M* :C(ri,Rn) - C(92',Rn): a - M*a, (5.9*) rrm

(M*a)k(x)=edktk(X)ak(xk*(x)), x E Q(k), I6 k < n.

J*: C(E2,Rn) -C(2+,Rn): h - J*h, (5.12*)

(J*h)k(x =e -dkk(x) f e+dkshk(Xk*(x)-svk)ds, x C 2+(k), 1 6k6n.

Since there are no further significent changes, those propositions for M*, J*, and S* = -S corresponding
to those for M, J, and S can be stated without verification.

PROPOSITION 3*. Suppose a C C(ri,Rn). Then

(a) M*ac E 

(b) (S * + D)(M*a) 0 over

(c) IM*a = a over ri U rt.

PROPOSITION 4*. Suppose ae Cc(ri,Rn) n Ci(ri,R). Then

(a) Ma CC 1 (2,Rn).

(b) (S'* + D)(Ma) = (S* +D)(Ma), over Q.

PROPOSITION 5*. Suppose h C C(S2+,Rn). Then

(a) J*h e D.

(b) (S*+D)(J*h)=h, over £2.

(c) IJ*h = 0, over ri.

PROPOSITION 6*. Suppose h C C(&2+,Rn) rl Cl(92,Rn). Then

(a) J*h e Cl(E2,Rn).

(b) (S*+D)(J*h)=(S*+D)(J*h), over Q2.

There are also estimates for M*a and J*h similar to those for Ma and Jh as stated in Propositions
7 and 8. We shall not state them; however, we will refer to them as Propositions 7* and 8* when we
need them.

It is also of interest to see how the associated structures stated in Propositions 3 through 6 and 3*
through 6* can be applied to the question of the uniqueness of the solutions g and g* of the dual prob-
lems 5.1 and 5.1*.
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PROPOSITION 9 (9*). Suppose the determining function 4 for £2 is a C1 -function. If g(g*) C

Cl(Q2,Rn) is a solution of 5.1 (5.1*) for h = 0 and a = 0, then g(g*) = 0.

Proof The proof is made only for S and not S* and, in fact, it is made for the weaker version

of 5.1 when S is replaced with S.

First, we choose an arbitrary f in CO(£2,Rn). From Proposition 5*a, we know that J*f CD.
Therefore, we consider the expressions

(J*f )k 3kgk + gk Sk*(J*f )k, 1 6 k 6 n.

Since Sk*(J*f )k = fk over £2 and since Sg = h - 0 over £2, we integrate these expressions over £2 and

apply the divergence theorem to obtain the expressions

f gkfkd£2 = (J*f )k gk vk n(x) dr, 1 kn.

Decomposing the right side using r = re(k) U ri(k) U rt(k) yields

f gkfkdn =J (J*f )k lI(k)gkj0(k) ( k )
rl(k) r( r'k

.fe(k) ( r*f)k I re(k) gkI re(k) vk 1 n(x) dT, I 6 k < n.

The first term in the right side is equal to zero since f has compact support in £. The second is equal

to zero since Eg = a = 0. Therefore,

J gkfkd2=0, 1 6k<n, f G CO(2,Rn).

This is sufficient to conclude that gk = 0 over £2, 1 6 k 6 n. m
Before concluding this section we should like to point out that an analysis of the related problems

(S+D)g- Xg=h over p, XCR+ (5.18a)

Eg = RIg + 8 over re (5.18b)

(S* + D)g* -Xg*= h, over £2, XCR, (5.19a)

Ig=REg + 6 over ri (5.19b)

is necessary for determining that S + D (S* +D) can be restricted to an appropriate domain DR(DR*) CD

associated with the boundary restrictions 5.18b or 5.19b, so that it is the infinitesimal generator of a

C°-semigroup over the closure of DR(DR*). This semigroup is used in the approach to developing the

existence for all t > 0 of positive solutions of the time-dependent problem associated with 3.1. An

analysis of 5.18 and 5.19 will be given in a future report on time-dependent solutions.

14
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VI. PROPERTIES OF G

In this section, we shall develop those properties of G (3.11) which are used to solve the implicit
relation G(b,g,a) = (0,0). The map G is defined so that if

(hop) = G(6,g,a), (6.1)

then

h=g-J(cLg+Dg+B(g,g)) -Ma-MS over Q+, (6.1 a)

a = a - RIJ(cL + D)g - RIJB(g,g) - RIMa - RIMS over re. (6.1b)

PROPOSITION 10. If (i) 5, a C C(reRn); (ii) g C C(Q,Rn), then the functions h and a defined
in 6.1 satisfy

(a) h E C(£2+,Rn)

(b) ( E C(re,Rn)

(c) g-hED.

Proof There is no difficulty in showing that k = Lg + Dg + B(g,g) E C(2,Rn) if g E C(2,Rn).
Since Ma and MS E C(2+,Rn) if a and 6 C C(re,Rn) (5.10), and Ah E C(£2+,Rn) if k C C(n,Rn)
(5.13), each term in the right side of 6.1a belongs to C(£2+,Rn). This verifies 6.1a.

Using the additional facts that (i) the impinging restriction If C C(ri,Rn) if fE C(£QW,Rn) (2.8a)
and (ii) Ra E C(cre,Rn) if a E C(ri,Rn) (2.7), and repeating the precedin argument will show that
p E C(re,Rn). This verifies 6.1b. Finally, using the facts that (i) Ma E D if a E C(Fe,Rn) and

(ii) Jk C D if k C C(£2,Rn), a second repetition of the same argument will show that (g- h) E D..
For fixed S C C(fe,Rn), we shall let G6 be the restriction of G to the 6-plane.

G6 C(+,Rn) X C(reRn) - C(Q£2,Rn) X C(reRn) (6.2)

G6(g,a) = G(6,g,a).

VII. AUXILIARY ESTIMATES

In this section, we develop some estimates for the operators J(cL +D) and RIM which appear in
the definition of G (3.13). These estimates will be used in the construction of the auxiliary map F6
(4.2).

Before making these estimates, some further restrictions on the linear collision operator L and on
the boundary scattering operator R must be introduced.

Referring to the definition of L, 3.6, we assume that the diagonal part of L (which is always non-
positive) is strictly negative. This restriction could also be achieved by imposing a suitable restriction
on the scattering law A.

Lkk < O. I < k < n. (7.1)

Referring to the definition of R and recalling that RII is bounded over re reveals that any in-
crease in the magnitude of Ivk n(x) I1- must be compensated for by the factor

15
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rik(X)/

Therefore, it is assumed that the product of these two factors is bounded. For a given flow region £2
and boundary scattering operator R, we define

ok = max{ ryk(x)lvk -n(x)lV :x Gre(k)}. (7.2a)

O(R,2) = max l Ok:1 6 k 6 nL. (7.2b)

We are interested only in those flow regions £ and boundary scattering operators R for which

0 (R, Q) < o-, so that (7.3a)

N(Ra)r, 6 0 (R, 2)N(a)rj, a E C(ri,Rn). (7.3b)

We shall now isolate similar damping factors which appear in the definitions of M and J. For a
given set of velocity states tvk II and any (positive) diagonal operator D, we define the following:

Xk =max 1v * n(x)l eGdj(x) : x E re(k)} (7.4a)

X(D,£2) = max IXk:1 < k 6 nI (7.4b)

gk = max I l-e dk7k(X) :x E 2(k)l (7.4c)

;(D,Q2) = max I'k :1 6 k < n}. (7.4d)

We can easily develop the following bounds for X and ':

0 < t(D,Q) < I (7.5a)

0 < X(D, Q) < I#Ird(() (7.5b)

where
(i) #(x) is the number of impinging velocity types at x CE r
(ii) d(Q) is the minimum diameter of £2.

Using the bounds stated in 7.5 and imposing the restriction 7.1, we make the desired estimate for
J(cL +D), for an appropriately chosen D. Referring to the diagonal part of L, 7.1, we shall henceforth
choose D to be

D: C(2+,Rn) - C(E2I,Rn):f - Df
(7.6)

(Df)k dkfk, dk = -cLkk, I < k 6 n.

Having chosen D as defined in 7.6, we simplify the notation by setting K = cL + D;

K: C(E2+,Rn) - C(92+,Rn): f - Kf = (cL +D)f.

16
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PROPOSITION 11. Suppose L satisfies 7.1 and D is as defined in 7.6. Then for any gin C(s2+,Rn)

N(JKg)n+ < t(D, £2) N(g)n+. (7.8)

Proof We shall let h = Kg, so that

hk =c L] Likgi, I <k<n.
jok

Since

LI = 0, dk =c E Lik;
j*k

and so

IhkI +(k) 6 dkN(g)52+, 1 6k n. (7.9)

Using the definition of M (5.9), we have

- e-dk7rk(x)
l(Jh)k W I 6 dk I hk la+ (k)'x Ce(k), I <k <n. (7.10)

Inserting 7.9 into the right side of 7.10 and using the definition of ¢ (7.4), we have

I(Jh)k (x)I 6 (I -e-dkk(x)) N(g)a+ < tkN(g)+, x C re(k), 1 < k < n.

This is certainly sufficient to conclude that 7.8 is valid..
Using the bounds stated in 7.5 and imposing the restriction 7.3, we shall make the desired estimate

for RIM.

PROPOSITION 12. Assume 7.3 is satisfied. Then for any a CE C(re,Rn),

N(RIMa°)re 6 O(R.£2) X(D,£2) N(a)re (7. 11 )

Proof. Using the definition of R (2.7) yields

|(RIM a)k(x)| I < ryk(x)lvk -n(x)l- 1Ivi-n(x)l I (IMoa),(x)|

xCre(k), I k<n.

Therefore using 7.3 to estimate the right side, we have

I(RIM a)k(x)l 6 0 k J Ivin(x)ll(IMa) 1 (x)l, (7.12)

xC-re(k), 1 k<n.

Using the definition of M (5.9) and the definition of Xk (7.4) results in
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E' Jvi-n(x)j1(IMa),(x)j<T 1vj .n(x)l e dr(laj(Xj(X)j

(7.13)

6 XkN(a)re, x EXre(k), 1 k 6 n.

Using 7.13 to estimate the right side of 7.12, we have

I(RIMaC)k(X)I OkXkN(a)re, xCEe(k), 1 <k n.

This is sufficient to conclude that 7.11 is valid. .
If X is a B-space, we can denote the identity map on X by Id:

Id:X - X: x - x. (7.14)

PROPOSITION 13. If D is as defined in 7. 6 and if L satisfies 7.1, then the equation

h = k - JKk over £2+ (7.15)

has a unique solution k (= (Id -JK)-' h) in C(&2+,Rn) for each h in C(2+,Rn ). Moreover,

N(k),+ < (1 -i(D,2))Y'N(h),+. (7.16)

Since the verification of this result follows directly from the estimate 7.8 as a standard result in the
theory of bounded contraction operators, it has been omitted.

PROPOSITION 14. Suppose R and £ are such that O(R,£2)X(D,£2) < 1. Then the equation

3=7r-RIMY over re (7.17)

has a unique solution y (= (Id -RIM)' (3) in C(re,Rn) for each ( in C(re,Rn). Moreover,

N(Y)re 6 (1 -0(R,2)X(0,£2))-l Nq3)re. (7.18)

The verification of this result follows directly from the estimate 7.11 for the same reasons as stated in
the comment following 7.16.

VIII. CONSTRUCTION OF FS

Using the estimates developed in the preceding section, we shall proceed with the construction of
the auxiliary map F6 (4.2), which we shall restate in a form more suitable for our purpose. We
emphasize that D and K are henceforth as defined in 7.6 and 7.7.

We shall define the auxiliary linear map T:

T: C(Q2+,Rn) X C(reRn) - F(&2+,Rn) X F(Fe,Rn)

(8.1 a)
(k,Y) - (h, )

18
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h = k - JKk -My over Q

(8.1

19

[b)

a =7 - RIMy - RIJKk over re.

The mapping properties of R, I, L, D, M, and J which are stated in 2.7, 2.8, 3.6, 3.7, 5.10, and 5.13 are
sufficient to show that T maps a continuous pair (k, 7) into a continuous pair (h, j).

T: C( , Rn) X C(re,Rn) - C(2+,Rn) X c(re,Rn). (8.2)

To show that T has an inverse, we shall prepare some constructions for solving two special sub-
systems of 8.1b.

PROPOSITION 15. Suppose R and £2 are such that 0 (R, 2) x(D, £) < 1. Then to each (h, () in
C(£2+,Rn) X C(re,Rn) there corresponds a unique solution (k,7) in C(92+,Rn) X C(re,Rn) of the
system

h = k -My over 2+

(8.3)
j =(Id-RRIM)-f over re.

Moreover, k and 7 are determined by

k = h + M(Id -RIM) -1 over Q+.
(8.4)

7Y = (Id -RIM)f p over re.

Proof. The second equation in 8.3 can be solved for Or when ( is given, using Proposition 14. So,
7 is given by the second expression in 8.4. Substituting this expression for 7 into the first equation of
8.3 determines that k is given by the first expression in 8.4.

PROPOSITION 16. Suppose that R and 2 are such that for some X, 0 < X < 1,

(8.5)

Then the equation

h=(Id-JK)k-MRlk over Q+ (8.6)

has a unique solution k(= (Id -JK-MRI) 1 h) for each h in C(Q+ ,Rn). Moreover,

N(h) + '> ( -X)(l - (D,&2))N(k)n+- (8.7)

Proof. Since 7.16 implies that

N((Id - JK)n+ > (I - t(D, 2))N(k)a+ (8.8)

and since 5.15, 7.3b, and 8.5 imply that

(8.9)

:Z

r-
401.

�r'

MI

0 (R, 92) < X (I - � (D, n)).

N(MRIk),, <0(R,92)N(k)12. <X(l -�(Dj2))N(k)n+,
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we have

N((Id - JK - MRI) k),+ > N((Id - JK) k)s+ - N(MRIk),+

> X11)(1 -¢(D, E)) N(k)&+.

This establishes 8.7. It also implies that the equation of 8.6 has a unique solution k in C(QW,Rn) for
each h in the range of (Id -JK-MRI).

We shall now show that the range of (Id - JK-MRI) is the same as the range of (Id - JK). Since
Proposition 13 implies that (I - JK) is invertible over C(E2+,Rn), the range of (Id - JK) is all of
C(QW,Rn). If the range of (Id - JK-MRI) is not all of C(QW,Rn), then for each d, 0 < d < 1, there
exists a g in C(£2',Rn) such that

g is not in the range of (Id - JK -MRI). (8.1Oa)

N(g)n+ = 1. (8.1Ob)

N(g - f )S+ > d, for all f in the range of (Id - JK -MRI). (8.1Oc)

(This is a property first formulated by F. Riesz. A proof can be found in Ref. 11, p. 2 1 8 .) However,

setting h = (Id - JK)- 1 g and using

N((Id - JK) h - (Id - JK - MRI) h),+ < N(MRIh),+ < 0 (R, £2) N(h)n+

6 X (I - t (D, Q)) N(h)&+ < 1N(ld - JK) h)n,.

Therefore

N(g - (Id - JK -MRI) h) + 6 XN(g). (8.11)

If we first choose d, X < d < 1, and then use 8.10 to produce the associated g, we find that 8.10c and
8.11 contradict each other. Therefore, the range of (Id - JK -MRI) is the same as the range of
(Id -JK), which is all of C(Q2+,Rn).

We could have easily made a proof for Proposition 16 'using contraction theory; however, the

present proof seems better since it shows that the range of (Id - JK -MRI) is the same as the range of
(Id - JK), whatever the latter.

With these results, we are prepared to construct the inversion of T.

PROPOSITION 17. Suppose that R and £2 are such that for some X, 0 < X < 1, 0 (R, £2) <
X(1 - (D,£2)) and 0(R,Q2) X(D,Q2) < 1. Then the system 8.lb has a unique solution (k,Y) in
C(&2+,Rn) X C(re,Rn) associated with each (h,() in C(£2+,Rn) X C(re,Rn).

Proof. Since 0 (R, £2) X (D, Q) < 1, we can apply Proposition 15 to solve the subsystem 8.3. We

shall denote this solution by (k,'y). Then, setting E = k - k and H '=Y - 'Y and subtracting 8.3 from 8.1b,
we have reduced the original problem to that of finding a solution (ki) of

JKk=(Id-JK)k-MY over
(8.12)

RlJKk = (Id -RIM) -RlJKk over re.

20
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Applying RI to the first equation in 8.12 and then subtracting the second, we find that

=Rrk over re. (8.13)

Therefore, we have further reduced the problem to that of finding a solution of the first equation in e
8.12 when i is given by 8.13:

JKk=(Id-JK)Xk-MRlk over £2+. (8.14)

Since U < A (1- ), we can apply the result of Proposition 16 to obtain the unique solution k
of 8.14 which is associated with JK1J

Therefore,

k = k + k over
(8.15)

Y RSk + (Id -RIM -1p over re,

k = h + m (Id -RIMf-l over
(8.16)

k = (Id -JK-MRI)- JKk over +,

is the desired solution (k,'Y) in C(QW,Rn) X C(re,Rn) which is associated with (h, g). .

Using Proposition 17, we shall define T- 1 :

T-1: C(92+,Rn) X C(reRn) - C(QW,Rn) X C(re,Rn)
(8.17)

(h,(3) - (k,÷,),

where (k,,Y) is determined by 8.15 and 8.16.

IX. PROPERTIES OF F6

Using G6 (6.2) and T- 1 (8.17), we shall simplify the expressions for the definition of F6 (4.1,
4.2, and 4.3) and also state an elementary mapping property:

F6 :Id - T-1 c G6: C(Q£,Rn) X C(re,Rn) - C(£2+,Rn) X C(reRn). (9.1)

In this section, we shall develop those properties of F6 which we will use to snow the existence
of a (unique) fixed pair (g, a) for F 6 when S is sufficiently small.

The first property is an estimate on how far F6 displaces the pair (0, 0).

PROPOSITION 18. Let 0 be as defined in 7.2, r as in 7.4, and X as in 8.5. Set (k, y) = F6 (0, 0).
Then

N(k) + = ((1 -X)(1 -s(D,£2)))-' N(S)re (9.2a)

N(Y)re =((1-A)(1 tDQ))) 0(RQ)N(S)re

21
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Proof. Using the same reasoning which developed 8.13, we conclude that 7 = RMk. Therefore,
9.2b is a direct consequence of the estimate 7.3a for R and the estimate 9.2a.

Setting (g,a) = (0,0) in the system 6.1 defining G6 , we find that h = -MS and 3 = -RIMS. Since
(k,RIk) = T-1 (h,P), (k,RIk) is determined by solving the equation

-MS = k - JKk -MRIk over £2.

The solvability of this equation was developed in Proposition 16. Applying 8.7 establishes the
validity of 9.2a. a

Another relevant property of F6 is the existence of a contraction constant over

B(r) = {(g,a) in C(£2+,Rn) X C(re,Rn); N(g),+ + N(a)re < r}. (9.3)

As a means to developing such a constant, we first develop an auxiliary estimate on the magnitude
of JB(g,f).

PROPOSITION 19. Let c and ¢ be as defined in 3.4 and 7.4. Then for every (gk) in C(&2+,Rn) X
C(re ,Rn)

N( JB (g k)) S 2 t(L) N(g), N(k)r' (9.4)

Proof. Using the properties of B (2.4), we have

(B (g, k))j I < EBi Igil k, I E Bij, I gil k, I+ jIBiI IgIgl Ikl. (9.5)
Q,m V+E m 

For the first term T(1) on the right side, we have

T(1) < { I ( Lim -Bjim ) N(g),2+ N(k),,+

since 2E Bf =Ljm (3.6). Since c E Lim =di (7.6 and LI = 0) and-2c EB di
Q+j mnj m

d -
T(1) < c N(g) + N(k)rz+- (9.6)

For the second term T(2), we have

T(2) {( B!m N(g)n2+ N(k)n+,

and,since-2cY B! = di,
Im4.jm I

22
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dir

T(2) 6 -2 N(g)s2+ N(k)f2+. (9.7)

Similarily for the third term T(3), we have

di
T(3) 6 - N(g)n+ N(k)n+. (9.8)

Substituting 9.6, 9.7 and 9.8 into 9.5 results in

2d1

l(B (g, k))j I c = N(g),2+ N(k)f,+. {9-9)

Next, using the estimate 5.16 for J., the estimate 9.9, and the definition of tj, yields

1 - e- dlIln+I2~
I( JB (g, k))i I S Ig k kBg, k))j I 6-N(g)f2+ N(k)n+-

The estimate 9.4 is then a direct consequence of the definition of T (7.4). u

We want to represent (F 6 (ga) - F6 (g,a)) in a form to which we can apply the estimates which
we have already developed. We shall let

(k,'y) = F6 (ga) -F 6 (g,a) (9.lOa)

(h, () = T(k,Y). (9.lOb)

Using Id = T- 1 o T, we first express (k,Y) in the form

(k,Y) = T-1 o T(g-g, a-a) - T-1 o (G6(ga) - G6(g,a)),

so that

(h, ,) = T(g -g, a - a) - (G6 (g, a) - G6 (g, a)).

Then writing out the systems defining T (8.1) and G6 (6.1,6.2), we find that

h = JB(kg,-) - JB(g,g) over Q+. (9.lla)

,= RIJB(j,g-) - RIJB(g,g) over re. (9.1 lb)

Since

B(g,f - h) = B(g,f) - B(g, h),

we have

B(g,g-) - B(g,g) = B(g,g-g) + B(.--g,g).

23
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Substituting this expression into 9.11, we have the desired expression for (hI):

h = JB(g-g,g) + JB(g,-,-g) over £2 . (9.12a)

( = RIJB (g-g,g) + RIJB(g-,g-- g) over re. (9.12b)

We have now prepared sufficient information to develop a contraction constant for F 6 over B(r).

PROPOSITION 20. Let c be as defined in 3.4, 0 as in 72, r as in 74, X as in 8.5 and B(r) as in
9.3. For any (ja) and (ga) in C(&2+,Rn) X C(FeRn), let

(k, y) = F6 (f, a) - F6 (g, a).

(h,(3) = T(k,'Y).

Then

N(k)+ < ((I - X)(1 - t(D, &2)))-l 2N~gD,+ + N(g)s;+ N(g -g)a+ (9.13a)

N()r e 0 (R 2)((I -X)(I -c(D'E)))-' 2¢(D, Q) (N(g\n+ + N(g))2+) N(9 -g)n+.

(9.13b)

Proof. The estimate 9.13b will follow directly from the estimate 7.3 for R and the estimate 9.13a.
Since 3= Rlh (9.12), we know that Y = RMk. Therefore h and k are related as in 8.6. Applying

the estimate 8.7, we have

N(h)f+ > (1 - X)(1 - (D, £)) N(k);+ (9.14)

Using the expression 9.12a for h and the estimate 9.4 for JB, we have

N(h) 2a (D, £ (N(j -g)1+ N(g)s,+ + N(- -g)2+ N(-),+).

Substituting this estimate into 9.14 and multiplying by ((1 - X)(l - T(D, ))f1 , we have developed the
estimate 9.13a.

With (k,Y) as defined in 9.10a, the estimates developed in Proposition 20 are sufficient for us to

assert that for any (u -) and (g, a) in B(r):

(N(k)n+ + N()re ((1 -X)(1 -(D ))) (D )r (N -g)+ +N(-a)

We shall let

a(tX) = ((1 - X)(I -¢(D,£2))) . (9.15a)

b(c, X,>) = a(¢ X) 4t(D,£) (9.1Sb)
C
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Then, collecting and summarizing the main achievement of this section, we have shown that

if k0 y °0 F6 (0, 0), then (N(kO )a.+ + N(y)re) < 2 a(T, A) N(6)re (9.16a)
Irn,

if (k,Y) is as defined in 9.1Oa, then for any (g,a) and (g,a) in B(r) (9.3)

(N(k)a+ + N( <)re) 6 b(c,T, X) r (N(L-g)s2+ + N(i -a)re) (9.16b)

where a(^,X) and b(c, ,X) are as defined in 9.15.

X. EXISTENCE OF STEADY-STATE SOLUTIONS

We shall now show that if KR (see 3.3)

KR = RI -El over re. (10.1)

is sufficiently small over re, then, subject to those restrictions on 0, X, and ¢ which were used to de-
velop the estimates stated in 9.16, there exists a solution (g,a0 ) of F6 (g,a) = (g,a).

PROPOSITION 21. Let c be as defined in 3.4, 0 as in 7.2, and X and r as in 74. Suppose

0(R,2) < KX(I - (D,£2)) for some X, O < X < 1 (10.2a)

0 (R I £) X(D, Q) < 1. (1 0.2b)

Let a(D, X) and b(c, ¢, X) be as defined in 9.15 and define the positive numbers r0 and r* as

8c a(- , ) b(c,-,) (10.3a)

2b (c, R, Xt) 1.b

Then to each KR with N(KR),, < r0 there corresponds a unique solution (g*, a*) in B (r*) of

F6 (g,a) =(g,a), 6 = CKR.

Moreover,

N * <C (I -¢(D,£)' (10.4a)

(g*,a*) is a continuous function of KR for N(KR)re < r0, (10.4b)

reducing to (g*,a*) = (0,0) when KR = 0.

Proof. With a(D, X) and b (c, ¢, X) as defined in 9.15, we want to choose r and N(KR )re so that
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2ca(6, X) N(KR)re K 1 -b(c, ,X)r.
r

The parabola y = r - br2 intersects the {y=0}- axis at r = 0 and r = 1/b and has the maximum value
of y = 1/46 at r = 1/2b. With ro as defined in 10.4, we see that if N(KR)re < r0 then the line y =
2ca(t, X) N(KR)re intersects the parabola y = r - br2 in the two points 0 < rl < r2 < lIb(c, ,X).
Therefore

2ca(t,X) N(KR)re

r*<1- c,,)r
whenever N(KR)Ie < r0 .

In the estimates stated in 9.16, replacing r with r* as defined in 9.3 results in

if (h0 ,)') = F6 (0,0) and if N(KR)re 6 r0 , then (10.5a)

(N(kO)S+ +N(°O)re) < (1 - b(c, ¢, X) r*)r*

if (k,Y) is as defined in 9.10, then for any (ga) and (g,a) in B(r*) (10.5b)

(N(k)n, + N(7)re ) < (b (c, T, X) r*) r*.

The estimates given in 10.5 show that FcKR is a contraction mapping over B(r*) (with contraction
constant equal to b(c, ,X) r*) uniformly with respect to KR with N(KR)re < r° and that FCKR displaces
(0,0) by a distance less than (1 - b(c, ¢, X) r*) r*.

Applying the uniform-contraction, fixed-point theorem, we can conclude that FCKR(g,a) = (g,a)
has a unique solution (g*, a*) in B(r*).

Since F6 is continuous in 6. the solution (g*,a*) is continuous in KR over N(KR)re < r°. The
estimate 10.4a follows from estimating 1/2b (c, t, X) and 10.4b follows from Proposition 18.

Since T-I exists, (g*, a*) = F6 (g*, a*) implies that G6 (g*, a*) = (0,0). As already discussed in
Section III (3.17), this implies that

g* = JKg* + JB(g*,g*) + Ma* + M(CKR) over Sl+. (10.6a)

Eg* = RIg* + CKR over re. (1 0.6b)

Since each term of the right side of 10.6a is in D (5.7), we can apply the operator (S+D) (5.8). There-
fore g* is a (weak) solution of the system

(a) Sg = cLg + B(g,g) over Q+ .

(b) Eg = RIg +CKR over re.

Consequently,

q* = c 1 + g* (10.7)

is a (weak) steady-state solution of

26
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Sq=B(q,q) over 52+. (10.8a)

Eq = RIq over re. (I0.8b)

Since N(g*),+ < c/6 (10.4), we also know that

6 1 < q* <-1 over 9+ (10.9)
6 6

(f< h over W+ is an abbreviation for fk(x) < hk(x), x E 92+(k), 1 -< k < n.)
Therefore formula 10.7, c > 0, generates a one-parameter family of (weak) positive steady-state

solutions which can be used to order-bound initial datum:
To each f in C(QW,R' 1 ) there correspond two positive constants, c < c, and two associated

steady-state solutions, q = cl + g and q = cl + g, for which

q<f<q over +.

XI. COMMENTS

In this report, we have developed the existence of a one-parameter family of (weak) positive
steady-state solutions of 3.1. This family of solutions is represented in the form q = cl + g, c > 0,
where g is a solution of

(a) (S +Dg) = Kg + B(g,g) over W+.

(b) Eg =RIg +CKR over re.

The family of solutions exists provided that KR is sufficiently small and 10.2 is valid.
We should like to suggest three problems. The first is to investigate whether or not solutions exist

for all KR when 10.2 is valid.
The second problem is to determine whether g is uniformly different from zero throughout S2 or

only near the boundary r. The estimate 10.4 for the magnitude of g suggests that q is not very different
from cl, in the sense that B(g,g) = Sg should have a small magnitude. In particular, we would like to
have estimates on the magnitude of Sg over compact subsets of Q2 and over closed neighborhoods of r.

The third problem is to determine whether or not there exists a correspondence between the solu-
tions g of 11.1 and the solutions k of its linearization (at g = 0):

(S +D)k = Kk over +. (11 .la)

Ek =RIk + CKR overre. (Il.lb)
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